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Complex GeometryComplex GeometryComplex Geometry

3 photographs of a sculpture
• Complex unknown illumination
• Geometry known
• Estimate microfacet BRDF and distant lighting

ComparisonComparisonComparison
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Dual RepresentationDual RepresentationDual Representation

Diffuse BRDF: Filter width small in frequency domain

Specular: Filter width small in spatial (angular) domain

Practical Representation: Dual angular, frequency-space 
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